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bstract

In this paper, the homotopy analysis method (HAM), one of the most effective method, is applied to obtain the approximate solution of the
onlinear model of diffusion and reaction in catalyst pellets for the case of nth-order reactions. The approximate analytical solution obtained

y HAM logically contains the solution obtained with Adomian decomposition method. The homotopy analysis method contains the auxiliary
arameter h̄, which provides us with a simple way to adjust and control the convergence region of solution series. By suitable choice of the auxiliary
arameter h̄, we can obtain reasonable solution for large Thiele modulus.

2007 Elsevier B.V. All rights reserved.
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. Introduction

Most of engineering problems, especially some diffusion and
eaction equations are nonlinear, and in most cases it is difficult
o solve them, especially analytically. Perturbation method is
ne of the well-known methods to solve nonlinear problems,
t is based on the existence of small/large parameters, the so-
alled perturbation quantity [10,22]. Many nonlinear problems
o not contain such kind of perturbation quantity, and we can use
on-perturbation methods, such as the artificial small parame-
er method [21], the δ-expansion method [13], the Adomian’s
ecomposition method [6]. However, both of the perturbation
nd non-perturbation methods cannot provide us with a simple
ay to adjust and control the convergence region and rate of
iven approximate series.

Also, the derivation of the Adomian decomposition method
sing the homotopy analysis method (HAM) is shown by
llan [7]. Adomian’s decomposition method is a powerful ana-
ytic technique for strongly nonlinear problems. Adomian’s
ecomposition method is valid for ordinary and partial differ-
ntial equations, no matter whether they contain small/large

∗ Correspondence address: Department of Mathematics, Science and Research
ranch, Islamic Azad University, Tehran 14778, Iran. Tel.: +98 9121305326;

ax: +98 2813780040.
E-mail address: abbasbandy@yahoo.com.

H
t
t
s
t
r
i
a

385-8947/$ – see front matter © 2007 Elsevier B.V. All rights reserved.
oi:10.1016/j.cej.2007.03.022
sis method; Soliton solution; Series solution

arameters, and thus is rather general. Moreover, the Adomian
pproximation series converge quickly. However, Adomian’s
ecomposition method has some restrictions. Approximates
olutions given by Adomian’s decomposition method often con-
ain polynomials. In general, convergence regions of power
eries are small, thus acceleration techniques are often needed
o enlarge convergence regions. This is mainly due to the fact
hat power series is often not an efficient set of base functions to
pproximate a nonlinear problem, but unfortunately Adomian’s
ecomposition method does not provide us with freedom to
se different base functions. Like the artificial small parameter
ethod and the δ-expansion method, Adomian’s decomposition
ethod itself also does not provide us with a convenient way to

djust convergence region and rate of approximation solutions.
One of the old nonlinear problem in chemical engineering

s the model of coupled diffusion and reaction in porous cat-
lyst pellets. Thiele [27] obtained the analytical solution for
rst order reaction in 1939, see Refs. [8,29] for more details.
owever, most of their conclusions were based on first reac-

ion order. Some authors, like Satterfild [24], have considered
he nth-order reactions, but without obtaining the approximate
olutions. Also, there are many numerical algorithms for solving

he nonlinear models of fluid flow, heat transfer and chemical
eactor. But the difficulty is that, most of them are dependent to
nitial guess and the reaction rate and indeed they cannot give
nalytical expression as solution.
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dx.doi.org/10.1016/j.cej.2007.03.022
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Currently, homotopy analysis method is employed for the
nalytic solution, which introduced first by Liao [15]. This
ethod which has been successfully applied to many non-

inear problems in engineering and science, the steady-state
aminar viscous flows past a sphere (governed by nonlin-
ar Navier–Stokes equations) [14], the magnetohydrodynamic
ows of non-Newtonian fluids over a stretching sheet [16],
oundary-layer flows over an impermeable stretched plate [17],
nsteady boundary-layer flows over a stretching flat plate [18],
xponentially decaying boundary layers [19], nonlinear model
f combined convective and radiative cooling of a spherical
ody [20], the unsteady magnetohydrodynamic flows of non-
ewtonian fluids [31], the unsteady mixed convection flow on
heated vertical flat plate in a porous medium [9]. All of these

uccessful applications verified the validity, effectiveness and
exibility of the HAM. Also, many types of nonlinear problems
ere solved with HAM by others [1–5,11,12,23,26,28,30].
Recently, the nonlinear model of diffusion and reaction in

orous catalysts was considered by Sun et al. [25], by using the
domian decomposition method. This method is special case of
AM [1,15], which we show later. By HAM, we can obtain the

easonable solution even for large Thiele modulus.

. The model of diffusion and reaction

The predict of diffusion and reaction rates in porous catalysts
n an important problem in chemical engineering, indeed when
he reaction rate depends on concentration in a nonlinear case. In
his heterogeneous system, the system is constructed as simple
iffusion using an effective diffusion coefficient. Suppose that
or diffusion, all the microscopic details of the porous medium
re lumped together into the effective diffusion coefficient De for
eactant. With this approximation a mass balance on a volume
f the porous medium gives

∂c′

∂t
= ∇De∇c′ − r(c′), (1)

here t is the time, c′ the chemical reactant concentration, and
(c′) the rate of reaction per unit volume. Now, suppose that the
iffusion occurs at a steady state in a porous slab, which is infi-
ite in two directions, giving a large plane sheet with diffusion
hrough the thickness of the sheet. We simplify the Eq. (1) to
ne dimensional case when De is constant, to give

d2c′

dx′2 − r(c′)
De

= 0, (2)

here x′ is the diffusion distance.
Now, we consider here one side of the slab as impermeable

nd the concentration is held fixed at the other side [25]. The two
oundary conditions, where l is catalyst pore length, are given
y

′ dc′

(0) = 0, −De

dx′ = 0, (3)

nd

′(1) = l, c′ = c′
s. (4)

w

w
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As Ref. [25], we consider the reaction A → B, with the rate
epending on the nth power of concentration of A, depend by
c′n, where the reaction constant k is a function of temperature.
ow, we want to predict the overall reaction rate, or the mass

ransfer in and out of the catalyst pellet. By change of variable
= x′/l and u = c′/c′

s, we have the following dimensionless
quation derived from Eqs. (2)–(4) as

d2u

dx2 − ϕ2un = 0, (5)

ith boundary conditions

du

dx

∣∣∣∣
x=0

= 0, u(1) = 1, (6)

here the Thiele modulus, ϕ2 = k(0)l2un−1(0)/De. It is pointed
hat, the Eqs. (1), (2) and (5) are valid under isothermal condi-
ions and when there are no convection boundary effects and no
oupling between chemical reaction and diffusion. The relative
mportance of the diffusion and reaction phenomena is measured
y the Thiele modulus.

. Basic idea of HAM

In this paper, we apply the homotopy analysis method
15,18–20] to the discussed problem. To show the basic idea,
et us consider the following differential equation

[w(x)] = 0,

here N is a nonlinear operator, x denotes independent vari-
ble, w(x) is an unknown function, respectively. For simplicity,
e ignore all boundary or initial conditions, which can be treated

n the similar way. By means of generalizing the traditional
omotopy method, Liao [15] constructs the so-called zero-order
eformation equation

1 − p)L[φ(x; p) − w0(x)] = ph̄H(x)N[φ(x; p)], (7)

here p ∈ [0, 1] is the embedding parameter, h̄ �= 0 is a nonzero
uxiliary parameter, H(x) �= 0 is an auxiliary function, L is an
uxiliary linear operator, w0(x) is an initial guess of w(x), φ(x; p)
s a unknown function, respectively. It is important, that one has
reat freedom to choose auxiliary things in HAM. Obviously,
hen p = 0 and p = 1, it holds

(x; 0) = w0(x), φ(x; 1) = w(x),

espectively. Thus, as p increases from 0 to 1, the solution φ(x; p)
aries from the initial guess w0(x) to the solution w(x). Expand-
ng φ(x; p) in Taylor series with respect to p, one has

(x; p) = w0(x) +
+∞∑
m=1

wm(x)pm, (8)
here

m(x) = 1

m!

∂mφ(x; p)

∂pm

∣∣∣∣
p=0

. (9)
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f the auxiliary linear operator, the initial guess, the auxiliary
arameter h̄, and the auxiliary function are so properly chosen,
he series (8) converges at p = 1, one has

(x) = w0(x) +
+∞∑
m=1

wm(x),

hich must be one of solutions of original nonlinear equation,
s proved by Liao [15].

According to the definition (9), the governing equation can be
educed from the zero-order deformation equation (7). Define
he vector

	 k = {w0(x), w1(x), · · · , wk(x)}.
ifferentiating Eq. (7) m times with respect to the embedding
arameter p and then setting p = 0 and finally dividing them by
!, we have the so-called mth-order deformation equation

[wm(x) − χmwm−1(x)] = h̄H(x)Rm( 	wm−1), (10)

here

m( 	wm−1) = 1

(m − 1)!

∂m−1N[φ(x; p)]

∂pm−1

∣∣∣∣
p=0

, (11)

nd

m =
{

0, m ≤ 1,

1, m > 1.

t should be emphasized that wm(x) for m ≥ 1 is governed by
he linear Eq. (10) with the linear boundary conditions that come
rom original problem, which can be easily solved by symbolic
omputation software such as Maple and Mathematica.

. The solution with HAM

.1. First approach

From (5) and (6), it is obvious that u(x) can be expressed by
he power series

(x) = c0 +
+∞∑
m=1

cmx2m,

here cm is coefficient to be determined. In first approach, we
ssumeu(x) = γw(x), whereγ = c0 = u(0). Hence, the original
qs. (5) and (6) become

′′(x) − ϕ2γn−1wn(x) = 0, (12)

ith the boundary conditions

(0) = 1, w′(0) = 0, (13)

nd
w(1) = 1, (14)

here u(0) �= 0 and the prime denotes the differentiation with
espect to x.

w

g Journal 136 (2008) 144–150

According to the Eq. (12) and the boundary conditions (13),
he solution can be expressed by

(x) = 1 +
+∞∑
m=1

dmx2m, (15)

here dm(m = 1, 2, . . .) are coefficients to be determined.
Due to the boundary conditions (13) and under the Rule of

olution Expression denoted by (15), it is natural to choose
0(x) = 1 as the initial approximation of w(x). Under the Rule
f Solution Expression, it is obvious to choose the auxiliary
inear operator

[φ(x; p)] = ∂2

∂x2 φ(x; p),

ith the property

[C1 + C2x] = 0,

here C1 and C2 are constants.
From (12), we define a nonlinear operator

[φ(x; p)] = ∂2φ

∂x2 − ϕ2γn−1φn(x; p), (16)

nd then construct such a homotopy

[φ(x; p)] = (1 − p)L[φ(x; p) − w0(x)] − ph̄H(x)N[φ(x; p)],

here h̄ is a nonzero auxiliary parameter. Setting H[φ(x; p)] =
, we have the zero-order deformation equation

1 − p)L[φ(x; p) − w0(x)] = ph̄H(x)N[φ(x; p)], (17)

ubject to the boundary conditions

(0; p) = 1,
∂φ(x; p)

∂x

∣∣∣∣
x=0

= 0, (18)

herep ∈ [0, 1] is an embedding parameter. When the parameter
increases from 0 to 1, the solution φ(x; p) varies from w0(x)

o w(x). Differentiating Eqs. (17) and (18) m times with respect
o p then setting p = 0 and finally dividing them by m!, we gain
he mth-order deformation equation

[wm(x) − χmwm−1(x)] = h̄H(x)Rm( 	wm−1(x)), (19)

ith boundary conditions

m(0) = w′
m(0) = 0. (20)

Due to the Rules of Solution Expression (15), the auxiliary
unction H(x) can be either in the form H(x) = xα, where α

s coefficient to be determined by the so-called Rule of Coef-
cient Ergodicity, i.e. all coefficients in (15) can be modified
s the order of approximation tends to infinity. Under the Rule
f Coefficient Ergodicity, our calculation indicate that, for all
quations under consideration, α = 0 for the Rule of Solution
xpression (15).

Obviously, the solution of Eq. (19) is
m(x) = χmwm−1(x) + h̄

∫ x

0

∫ η

0
Rm[ 	wm−1(ξ)]dξ dη

+ C1 + C2x, (21)
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called h̄-curve, it is straightforward to choose an appropriate
range for h̄ which ensure the convergence of the solution series.
Fig. 1 shows the u(0) = γ under different h̄, in case of n = 1
and ϕ = 10. For showing the efficiency of HAM, we choose
S. Abbasbandy / Chemical Engi

here the integral constants C1 and C2 are determined by the
oundary conditions (20).

In this way, we get wm(x) for m = 1, 2, 3, . . ., successively
nd at the Mth-order approximation, we have the analytic solu-
ion of Eq. (12):

(x) ≈ WM(x) =
M∑

m=0

wm(x), (22)

nd we can determine γ from boundary condition (14), i.e.

w(1) ≈ γWM(1) = 1.

.2. Second approach

Now, we define a nonlinear operator

[φ(x; p), Γ (p)] = ∂2φ

∂x2 − ϕ2Γ n−1(p)φn(x; p), (23)

nd then construct such a homotopy

[φ(x; p), Γ (p)] = (1 − p)L[φ(x; p) − w0(x)]

− ph̄H(x)N[φ(x; p), Γ (p)],

here h̄ is a nonzero auxiliary parameter. Setting
[φ(x; p), Γ (p)] = 0, we have the zero-order deformation

quation

1 − p)L[φ(x; p) − w0(x)] = ph̄H(x)N[φ(x; p), Γ (p)], (24)

ubject to the boundary conditions (18). When p = 0 and 1, the
bove equation has the solution

(0; p) = w0(x),

nd

(x; 1) = w(x), Γ (1) = γ.

hen the parameter p increases from 0 to 1, the solution φ(x; p)
aries from w0(x) to w(x), so does the Γ (p) from γ0 to γ . If this
ontinuous variation is smooth enough, the Maclaurin’s series
ith respect to p can be constructed for φ(x; p) and Γ (p), and

urther, if these two series are convergent at p = 1, we have

(x) = w0(x) +
+∞∑
m=1

wm(x), γ = γ0 +
+∞∑
m=1

γm,

here

m(x) = 1

m!

∂mφ(x; p)

∂pm

∣∣∣∣
p=0

, γm = 1

m!

∂mΓ (p)

∂pm

∣∣∣∣
p=0

.

Differentiating Eq. (24) and its boundary conditions (18) m
imes with respect to p then setting p = 0 and finally dividing
hem by m!, we gain the mth-order deformation equation
[wm(x) − χmwm−1(x)] = h̄H(x)Rm[ 	wm−1(x), 	γm−1], (25)

ith boundary conditions (20), where

	k = {γ0, γ1, · · · , γk}.
F
a
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Due to the Rules of Solution Expression, as before we get
(x) = 1. Note that as before, we still have the freedom to

hoose the value of the auxiliary parameter h̄. Also, the solution
f Eq. (25) is

m(x) = χmwm−1(x) + h̄

∫ x

0

∫ η

0
Rm[ 	wm−1(ξ), 	γm−1]dξ dη

+ C1 + C2x, (26)

here the integral constants C1 and C2 are determined by the
oundary conditions (20). As before, we choose w0(x) = 1 and
ence, we get wm(x) for m = 1, 2, 3, . . ., successively and at
he Mth-order approximation, therefore we have the analytic
olution of Eq. (12):

(x) ≈ WM(x) =
M∑

m=0

wm(x), γ ≈ ΓM =
M∑

m=0

γm, (27)

nd we can determine γ from boundary condition (14), i.e.

w(1) ≈ ΓMWM(1) = 1,

ence, γ0 = 1 and γ1, γ2, . . . are obtained successively.

. Results

.1. First approach

According to Section 4.1, we should ensure that the solution
eries (15) converges. Note that this series contains the auxiliary
arameter h̄, which influence its convergence region and rate.
e should therefore focus on the choice of h̄. When h̄ = −1

he expression (22) is as the same series solution obtained by
domian decomposition method, which obtained by Sun et al.

25]. Thus, the homotopy analysis solution logically contains
he Adomian decomposition solution [15].

As pointed by Liao [15], the auxiliary parameter h̄ can be
mployed to adjust the convergence region of the series (22)
n homotopy analysis solution. In general, by means of the so-
ig. 1. u(0) with different h̄, in case of n = 1 and ϕ = 10 at the 15th order of
pproximation.
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Fig. 2. Error of 15th-order HAM solution in case of n = 1 and ϕ = 10, solid
line: h̄ = −1.1; dotted line: h̄ = −0.9; dashed line: h̄ = −1.
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Fig. 5. Error of 50th-order HAM solution in case of n = 2 and ϕ = 20, solid
line: h̄ = −1.4; dotted line: h̄ = −1.3; dashed line: h̄ = −1.
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ig. 3. Error of 35th-order HAM solution in case of n = 2 and ϕ = 10, solid
ine: h̄ = −1.3; dotted line: h̄ = −1.4; dashed line: h̄ = −1.

arge value for ϕ in our examples. It is seen that convergent
esults can be obtained when −1.4 � h̄ � −0.8. Thus, we can
hoose an appropriate value for h̄ in this range to get convergent
olution. We can investigate the influence of h̄ on the r esidual
rror defined as

esidual error ≈ W
′′
M(x) − ϕ2γn−1Wn

M(x)
n Fig. 2. We can see that the best value of h̄ in this case is not
1. Figs. 3–7 show the results of HAM for different values

f n and ϕ. Also in Fig. 4, the numerical solution obtained by
nite difference method that implements the three-stage Lobatto

ig. 4. Approximation of u(x) by HAM in case of n = 2, ϕ = 10 and h̄ = −1.3,
olid line: 35th-order approximation; symbols star: 20th-order approximation;
ymbols box: finite difference method.

p
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F
l

ig. 6. Error of 50th-order HAM solution in case of n = 4 and ϕ = 10, solid
ine: h̄ = −1.4; dotted line: h̄ = −1.2; dashed line: h̄ = −1.

ormula. This is a collocation formula and the collocation poly-
omial provides a C1-continuous solution that is fourth order
ccurate uniformly in [0, 1]. Mesh selection and error control
n this method are based on the residual of the continuous
olution.

Also, Table 1 shows the obtained value of u(0) in these exam-
les by HAM and finite difference method, which M shows the
rder of approximation and the reported h̄ is for smaller residual

rror case. Another values of n and ϕ are illustrated in second
pproach.

ig. 7. Error of 20th-order HAM solution in case of n = 0.5 and ϕ = 1.5, solid
ine: h̄ = −0.6; dotted line: h̄ = −0.8; dashed line: h̄ = −1.
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Table 1
Results for u(0) at various values of n and ϕ

n ϕ M h̄ HAM FDM

0.5 0.5 20 −1.0 0.881358 0.881359
0.5 1 20 −0.8 0.594446 0.594447
0.5 1.5 20 −0.6 0.294290 0.294290
2 1 20 −1.0 0.712256 0.712257
2 2 20 −1.3 0.443723 0.443723
2 4 20 −1.3 0.212590 0.212591
2 10 35 −1.3 0.0570842 0.0570843
2 20 50 −1.4 0.0175553 0.0175615
4 1 20 −1.2 0.779145 0.779148
4 10 50 −1.4 0.257003 0.257005

F
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5

s

R

F
a
v

h̄

v

F
h̄

Fig. 10. Error of 15th-order HAM solution in case of n = 2 and ϕ = 0.5, solid
line: h̄ = −1.0 with u(0) = 0.895804; dashed line: h̄ = −1.2.

Fig. 11. Error of 15th-order HAM solution in case of n = 0.5 and ϕ = 0.5, solid
line: h̄ = −1.0 with u(0) = 0.881358; dashed line: h̄ = −1.2.
ig. 8. γ with different h̄, in case of n = 2 and ϕ = 1 at the 6th order of
pproximation.

.2. Second approach

According to Section 4.2, we should ensure that the solution
eries (27) converge. In this case, the residual error is defined as

esidual error ≈ W
′′
M(x) − ϕ2Γ n−1

M Wn
M(x).

ig. 8 shows the u(0) = γ under different h̄, in case of n = 2
nd ϕ = 1. For showing the efficiency of HAM, we choose large

alue for ϕ in our examples.

It is seen that convergent results can be obtained when−1.3 �
� −0.5. Figs. 9–12 show the results of HAM for different

alues of n and ϕ.

ig. 9. Error of 15th-order HAM solution in case of n = 2 and ϕ = 1, solid line:
= −0.8 with u(0) = 0.712256; dashed line: h̄ = −1.
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ig. 12. Error of 15th-order HAM solution in case of n = 0.5 and ϕ = 1, solid
ine: h̄ = −1.2 with u(0) = 0.594469; dashed line: h̄ = −1.

. Conclusions

In this paper, the homotopy analysis method [15] is applied
o obtain the solutions for the nonlinear model of diffusion and
eaction in porous catalysts. Also, it is shown that the obtained
olution by HAM logically contains the solution obtained with
domian decomposition method. Two different approaches are

onsidered. We chose large value for ϕ to indicate the efficiency

f HAM. The obtained results were also compared with the
umerical solutions obtained by finite difference method.

The benefits of HAM with respect to Adomian’s decomposi-
ion method are stated. It should be emphasized, HAM provides
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s with a convenient way to control the convergence of approx-
mation series, which is a fundamental qualitative difference in
nalysis between HAM and other methods. So, this paper shows
he flexibility and potential of the homotopy analysis method for
omplicated nonlinear problems in engineering.
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